
The Event Mesh:
A Primer

Chapter 1: What Are Events?
PAGE 3

Chapter 2: The Event-Driven Enterprise
PAGE 5

Chapter 3: What Is an Event Mesh?
PAGE 8

Chapter 4: Deploying the Event Mesh in the Real World
PAGE 10

Chapter 5: Conclusions and More Resources
PAGE 11

Copyright © 2020 RTInsights. All rights reserved. All other trademarks are the property of their respective companies. The information
contained in this publication has been obtained from sources believed to be reliable. NACG LLC and RTInsights disclaim all warranties as to
the accuracy, completeness, or adequacy of such information and shall have no liability for errors, omissions or inadequacies in such information.
The information expressed herein is subject to change without notice.

The Event Mesh: A Primer 3 Copyright (©) 2020 RTInsights

Chapter 1: What Are Events?

An event is a change, action, or observation in a system that produces a notification. Events are
triggered by changes such as master data entity updates like a customer billing address change, or an
action like a new order or a trade approval. Other triggers are more basic, like a battery charge level
threshold being met or a periodic temperature reading from a sensor. It is common to refer to the
notification as the “event.” Rather than use the term trigger, software architects often say “send an
event” when a specified condition occurs.

Event notifications produced programmatically by the system of
record (SOR), can contain a snapshot of the affected entity, a delta
(i.e., changed attributes only), or a reference (e.g., a PO number).
Snapshot and delta events usually carry business meaning, have a
complex structure, and are commonly represented in JSON or XML.
When a reference is contained in the event notification, a call back to
the SOR is required to get a more meaningful data set. For example,
if an event contains just the PO number, then a call back to the Order
Management Application is required to request more information
about the PO entity.

The database (DB) change log also can be a source of events. The
advantage of the DB change log is that it is maintained by the DBMS
automatically and does not require the application developer to make
modifications to produce the event notification.

Regardless of the type of event, time ordering is an important char-
acteristic. Time ordering, also referred to as sequence preservation,
ensures that the stream of events retains the integrity of the business state. For example, a snapshot
event represents the state of an entity at a point in time. If processed out of sequence, an invalid
representation of the entity would result. An event stream is a time-ordered set of events that can’t be
modified once produced. Such a property is described as immutable.

In a system based on events, a component produces an event without necessarily expecting or control-
ling the immediate consumption of that event. There is a loose coupling between the event producer
and consumer. From a development standpoint, the decoupling of event production and consumption
greatly simplifies matters. A developer can create an event without needing to know the specifics of the
environment in which it will be consumed.

That contrasts with a system relying on service invocation using a request-reply interaction pattern. The
roles in service-oriented architectures (SOA) and more modern REST architecture style rely on synchro-
nous tight coupling between the client and the server. The tight coupling of components leads to some
limitations that can be overcome in an event-driven architecture.

In an event-based system,
a component produces an
event without necessarily

expecting or controlling the
consumption of that event.

This decoupling of event
production and consumption
enables a developer to create

an event without needing
to know the specifics of

the environment in which it
will be consumed—greatly

simplifying the process.

The Event Mesh: A Primer 4 Copyright (©) 2020 RTInsights

Event-Enabling Technologies

Over the past 20 years, messaging systems have implemented the core capabilities for point-to-point
and pub/sub communication. Recently, cloud computing has surfaced limits of the current technologies
in areas such as interoperability and scalability. A number of open source projects and standards have
gone beyond the core features and enabled large-scale event-driven application development, including
Apache Kafka, Advanced Message Queueing Protocol, and Knative.

1. Apache Kafka is a publish/subscribe messaging system that uses a distributed commit log as
the durable record of all messages. Multiple producers can add messages to a topic, and multiple
consumers can read messages managing their position in the sequence. Other features include
the ability to replay messages, high throughput, and horizontal scalability. Apache Kafka is often
deployed when there is a high volume of messages with low latency
requirements.

2. Advanced Message Queuing Protocol (AMQP) is a standard messaging protocol with advanced
capabilities such as flow-control, message delivery guarantees, and security. As a wire-level
protocol, it enables the integration between different messaging platforms and products. AMQP is
a good choice for the protocol of the event mesh in a heterogeneous cloud/on-premise environ-
ment. The Apache Software foundation’s AMQP implementation—Qpid provides a number of
features like queuing, transaction, management, and clustering and APIs for C++ and Java (JMS).

3. Knative is a Kubernetes-based platform for serverless computing. Developers can focus on the
development of specific functions, while the platform is responsible for allocating computing
resources based on the requests. Using Knative means your serverless applications can be
deployed and run on any Kubernetes platform, preventing vendor lock-in.

Knative Eventing is a component of Knative that enables event-driven applications on the
platform that react to real-time information via event notifications. It is consistent with the
CloudEvents specification, which ensures interoperability with various messaging protocols,
including Apache Kafka, MQTT, AMQP. Knative Eventing enables cloud-native, cloud-agnostic
event-driven development.

These three technologies are emerging as keys to event-driven architecture for microservices.

The Event Mesh: A Primer 5 Copyright (©) 2020 RTInsights

Chapter 2: The Event-Driven Enterprise

Enterprises are compelled to improve the speed and responsiveness of their internal and customer-
facing processes to keep pace with dynamic competitors. In almost all industries, there is an increasing
volume of event producers and consumers in their IT ecosystems. Making use of the volume of events
and making use of the information in event streams requires an event-driven architecture (EDA).

Event-driven architecture (EDA) is a software architecture paradigm promoting the production, detec-
tion, consumption of, and reaction to events.¹ But EDA entails more than just the production and
consumption of events. It involves the planning for how events are interpreted, transformed, published
to subscribers, propagated across distributed networks, and persisted. These design patterns illustrate
the scope of an EDA.

Key design patterns and capabilities of an EDA include:

4Eventual consistency between the system of record and systems that maintain copies. Rather than
two-phase commit or distributed transactions, events are used to allow systems to become
consistent after some delay. The delay can be very short (e.g., within seconds) or much longer
e.g., within hours) as long as the business requirements are met.

4Pub-sub and message-oriented middleware to provide transport to reliably move event messages
from point-to-point or publisher-to-subscriber.

4Protocol transformation and routing using enterprise integration patterns. EDA systems typically
use brokers and a service bus to provide a hub-and-spoke topology and capabilities to bridge
different middleware and message formats.

4Streaming analytics, which is a type of event stream processing that applies machine learning or
business rules against a time delimited window of events to make decisions or take actions.

4Event stream as the first-class system of record, where in a microservices domain, the event
stream is an authoritative source of data. This pattern is referred to as Event Sourcing.

4Idempotent message processing, which ensures that systems are designed so that the same event
can be processed multiple times without changing the result beyond the initial processing.

4Event mesh, which is a dynamic infrastructure that allows messages to be delivered across a
distributed enterprise.

As EDA concepts become more broadly adopted, enterprises progress through increasing levels of
maturity.

1 Source: Wikipedia, “Event-Driven Architecture”

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Software_architecture

The Event Mesh: A Primer 6 Copyright (©) 2020 RTInsights

There is no
asynchronous
communication
in the system.

There is some
adoption of
asynchronized
communication
between
applications.

Install proper
streaming and
messaging with
some level of
high-availability
plan.

Provide limited
self-service
between
departments.

Provide
discoverability
of services,
endpoints, and
data schemas,
as well as the
ability to scale
freely on cloud
platforms.

Provide 100%
scalable self-
service for all
developers.

Introduce some
automations for
continuous
delivery.

Provide
observability of
the system
environment.

Allow tracing of
events and
monitoring of
application
performance and
resource usage.

Build automations
into all continuous
delivery pipelines.

0 1 2 3 4

Event-driven architecture maturity level

At Level 0, there is no asynchronous communication in the enterprise. All integration is synchronous, for
example, Synchronous request-reply Web services called from Web Browser to back-end applications.

At Level 1, there is some adoption of async communication between Applications. For example,
point-to-point message exchange between related systems using one messaging platform like IBM MQ,
JMS, or Apache Kafka.

At Level 2, streaming and messaging are installed with some level of high-availability and limited self-
service. The messaging infrastructure has the capability to handle failures in the infrastructure. It can
provide guarantees about the delivery of the messages (e.g., at-least-once, at-most-once) and can
participate in distributed transactions. More applications, based on diverse technology stacks in other
parts of the enterprise, can connect to the event streams to take advantage of the available information.

The Event Mesh: A Primer 7 Copyright (©) 2020 RTInsights

At Level 3, discoverability and scalability are enabled. Applications register the end-points and the data
schema in a directory that can be accessed by other applications. The applications producing events be-
come less aware of all the clients connected, and the same events can be used for new purposes such as
logging and business monitoring. The messaging infrastructure can handle higher and variable load using
auto-scaling and allows event producers and consumers to be unaware of the physical network topolo-
gy. Some automation is implemented for the release process, referred to as Continuous Delivery, so the
event-driven applications can be deployed more easily.

Finally, at Level 4, observability of the entire system is enabled, and fully automated processes for releas-
es provide Continuous Delivery capabilities. The events are pervasive in the organization with new sourc-
es and destinations added routinely. The focus changes to maintaining a robust messaging infrastructure
that can scale quickly as the volume of messages increases. Enterprise-wide observability is available so
that administrators can monitor resources utilization real-time and trace messages end-to-end across
multiple nodes in the event mesh. Full automation is implemented for enabling Continuous Delivery so
the event-driven applications can be deployed at a click of the button.

Given these capabilities, organizations are embracing EDA to support
a variety of business initiatives. Coinciding with the move to an EDA,
another fundamental architectural shift is taking place. Namely, there
is an explosion in the use of serverless technology, which lets devel-
opers focus on the code without concern for managing and provision-
ing the back-end infrastructure.

Serverless introduces new challenges to EDA. Things like Java events,
event handling loops, and older EDA structures were not designed to
work in today’s application environment. These older technologies
were suitable in traditional client-server and data center deployment
scenarios. They do not easily scale to modern application scenarios
that are based on loosely coupled elements working together over a
distributed cloud architecture.

Technology such as Knative eventing—which addresses a common need for cloud-native development
and provides composable primitives to enable late-binding event sources and event consumers—helps
serverless and EDA complement one another.

Coinciding with the move to an
EDA, another fundamental
architectural shift is taking place.
Namely, there is an explosion in
the use of serverless technology,
which lets developers focus on
the code without concern for
managing and provisioning the
back-end infrastructure.

The Event Mesh: A Primer 8 Copyright (©) 2020 RTInsights

Chapter 3: What Is an Event Mesh?

Large enterprises have widely distributed network and application
topologies. They need to reliably deliver a high volume of events
across global networks, traversing hybrid clouds and on-prem
applications while avoiding bottlenecks. The event mesh is a key
enabler for the event-driven enterprise.

An event mesh is a dynamic infrastructure that propagates
events across disparate cloud platforms and performs protocol
translation. Critical capabilities include:

4Support for ingress and egress of events in various transports, such as Kafka, Knative, HTTP,
AMQP, and others

4Fault tolerance for high-reliability delivery of messages, including automated recovery from
network failures and fallback destinations for undeliverable messages

4Support for multi-protocol bridges between disparate events, applications, and messaging
platforms

4Support for on-premises and multi-cloud deployment to provide a uniform infrastructure across
the enterprise

4Multiple client APIs for a wide range of programming languages and environments

4Support for Multicast (all subscribers receive a copy of each message) or anycast (one subscriber
receives a copy of each produced message)

4Management console for the administration of the mesh and monitoring of activity

4Secure transmission of event messages

These capabilities are needed to support modern application development. Microservices and cloud
architectures often leverage a service mesh, which is a networking infrastructure that outboards the
network logic, allowing the microservice to focus on business logic. A service mesh supports synchro-
nous request-reply processing. Similarly, an event mesh supports application developers by alleviating
concerns about the location of consumers across local, regional, and global distributed topologies to
support loosely coupled event-driven use cases.

The Event Mesh: A Primer 9 Copyright (©) 2020 RTInsights

The figure below illustrates the elements of an event mesh. Events can flow bidirectionally across the
multi-cloud topology. As more applications produce and consume events, a key feature of the event
mesh is that events published by any application in any programming environment (e.g. a Java JMS e
event) in one cloud can be consumed by an application on another cloud using a different API (e.g., a
Kafka event subscription in a Python application). This frees application developers from the complex-
ity of designing and managing complex event distribution networks and lets application development
teams choose the development environment of their choice without any constraints of the messaging
platform. And serverless application deployment model reduces the infrastructure requirements for the
disparate application environments.

Multi-Cloud Event Mesh

Tr
af

fic

Tr
af

fic

Ev
en

ts

Tr
af

fic

Tr
af

fic

Tr
af

fic

Tr
af

fic

Ev
en

ts

Kafka

Amazon Web Services

Applications Applications Applications

Microsoft Azure Google Cloud

AMQPKnative Kafka JMS AMQPJMS Knative

The Event Mesh: A Primer 10 Copyright (©) 2020 RTInsights

Chapter 4: Deploying the Event Mesh in the Real World

An event-driven architecture that leverages the event mesh supports a wide range of use cases that
encompass complex multi-cloud, widely distributed topologies using diverse application stacks.

The examples in this section show how the event mesh is leveraged in real-world scenarios.

Car Rental Recommendation System
A car rental company has a reservation and loyalty application with a large user base, accessible
through web and mobile apps, with many pages and dynamic content. The apps generate a large

volume of interaction events that need to be processed in real-time to create a personalized experience
for the user and to update the customer behavior model. The design for this scenario is for the user
interface (UI) components to push events via the event mesh pub-sub component, such as Apache Kafka.

A big-data processor, like Apache Spark, will subscribe to these streams for analytics. At the same time,
stream analytics analyze the real-time events via Kafka topics and generate new events that are sent
back to the UI as dynamic content or to other applications, like fraud detection. Such a design has been
proven to be highly scalable, handling a large number of events per day while providing real-time recom-
mendations and personalization.

Multinational Financial Organization
A financial organization with branches and offices in multiple countries and trading hub cities
needs to keep latency and response time low for the synchronization of real-time trading data.

Distributed apps connect to the edges of the event mesh and send messages to data streams identi-
fied by virtual names that represent the desired destinations. Routers, like Apache Qpid, ensure that
messages go to the proper destination using naming services and routing rules. Messages are routed
without clients being aware of the physical topology of the network and messaging system.

This use case highlights a multi-protocol, standards-based messaging system. A telecommunications
company has a customer service mainframe application built using CICS/COBOL in the 1980s. It sends
repair orders to a Java dispatch app running on a Linux server and finally sends notifications to a mobile
application. To support this use case, the mainframe communicates with the messaging system through
an AMQP channel between IBM MQ and the message broker. The Java application uses the JMS
standard API to receive/send messages. Finally, the communication with the mobile application is done
using a lightweight AMQP API supported by Apache Qpid.

Interoperable Train Control Messaging
The Federal Railroad Administration funded the development of a messaging solution that allows
applications to exchange messages regardless of their physical locations and type of connectivity.

The apps included onboard systems, office systems, and wayside signals. High availability of all mes-
sage exchange was required to ensure the safe operations of the trains. Trains travel through high and low
bandwidth networks and through tunnels with no network connectivity. All messages need to have guaran-
teed delivery, and the entire network is highly available and fault-tolerant. A multi-transport high availability
clustered Qpid AMQP implementation was selected to support the exchange of messages.

The Event Mesh: A Primer 11 Copyright (©) 2020 RTInsights

Chapter 5: Conclusions and More Resources

Advanced enterprises consider an EDA of equal importance and complementary to a service-oriented
architecture. The reason: In many modern enterprises, there are more event producers and consumers
in their IT ecosystems, and the volume of events is growing. Harnessing these events enables enter-
prises to be more agile in their internal business processes and their customer interactions.

Enterprises typically follow an EDA journey that can be viewed in terms of a maturity model. Most start
with the integration of a few related applications, leveraging a single messaging system. Over time, more
mature enterprises implement an event mesh as an enabler for the loosely coupled integration of legacy
systems and modern microservice-based applications across widely distributed topologies.

An event mesh has a key set of features that supports such multiple interaction patterns and reduces
complexity for developers of modern applications that implement near real-time loosely coupled design
patterns. Serverless deployments, microservices and the event mesh support an environment where
computing resources scale quickly and automatically. But perhaps the most important benefit is that
application developers can focus on implementing the business logic using the best tools available for
the job. The use of an EDA and event mesh offers a simplicity with regard to application development.
Event developers need only be concerned about their environment. Once the event is published, any
consumer can make use of the event regardless of the development platform or streaming technology
they're using, or the cloud the event is hosted on.

Red Hat enables a dynamic event mesh with open-source-based products in the AMQ family.
For more information, follow these links.

Article: What is Apache Kafka?

Analyst Report: Event-driven applications with Red Hat AMQ Streams

Datasheet: Red Hat AMQ: Simplify Apache Kafka on Red Hat OpenShift

Detail: Event-driven architecture for a hybrid cloud blueprint

Datasheet: Red Hat Integration: Cloud-native connectivity for apps and systems

https://www.redhat.com/en/topics/integration/what-is-apache-kafka
https://www.redhat.com/en/resources/event-driven-applications-amq-streams-analyst-paper
https://www.redhat.com/en/resources/amq-streams-datasheet
https://www.redhat.com/en/resources/event-driven-architecture-hybrid-cloud-blueprint-detail
https://www.redhat.com/en/resources/red-hat-integration-connect-cloud-native-apps-and-systems

The Event Mesh: A Primer 12 Copyright (©) 2020 RTInsights

RTInsights is an independent, expert-driven web resource for senior business and IT enterprise professionals in
vertical industries. We help our readers understand how they can transform their businesses to higher-value
outcomes and new business models with AI, real-time analytics, and IoT. We provide clarity and direction amid the
often confusing array of approaches and vendor solutions. We provide our partners with a unique combination of
services and deep domain expertise to improve their product marketing, lead generation, and thought leadership
activity.

Red Hat is the world’s leading provider of enterprise open source software solutions, using a community-powered
approach to deliver reliable and high-performing Linux, hybrid cloud, container, eventing, and Kubernetes
technologies. Red Hat helps customers develop cloud-native applications, integrate existing and new IT
applications, and automate and manage complex environments. A trusted adviser to the Fortune 500, Red Hat
provides award-winning support, training, and consulting services that bring the benefits of open innovation to
any industry. Red Hat is a connective hub in a global network of enterprises, partners, and communities, helping
organizations grow, transform, and prepare for the digital future.

